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A theoretical investigation is made into the dynamics of pitch jumps in cholesteric liquid-crystal layers
having finite strength surface-anchoring conditions. A presentation is given of general formulations which
connect the dynamics of pitch jumps with the key material parameters such as the viscosity, the specific form
of the anchoring potential, and the dimensionless parameterSd=K22/Wd, whereK22 is the elastic modulus,W
is the depth of the anchoring potential, andd is the layer thickness. To illustrate the dependence of the pitch
jump dynamics upon the shape and strength of the anchoring potential, we investigate two sets of different
model surface-anchoring potentials for a jump mechanism that is connected with the slipping of the director at
a surface over the barrier of the anchoring potential. Two types of “narrow” well potentials that are natural
extensions of the more familiar “wide” potentials are considered: one type is based upon the well-known
Rapini-Papoular potential and the other upon theB potential, introduced in Belyakov, Stewart, and Osipov,
JETP 99, 73 s2004d. Calculations for the unwindingswindingd of the helix in the process of the jump were
performed to investigate the case of infinitely strong anchoring on one surface and finite anchoring on the
other, which is important in applications. The results show that an experimental investigation of the dynamics
of the pitch jumps will allow one to distinguish different shapes of the finite strength anchoring potential, and
will, in particular, provide a means for determining whether or not the well-known Rapini-Papoular anchoring
potential is the best suited potential relevant to the dynamics of pitch jumps in cholesteric layers with finite
surface-anchoring strength.
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I. INTRODUCTION

The influence of finite surface anchoring and thermody-
namic fluctuations upon the temperature dependence of pitch
variations in planar layers of cholesteric liquid crystal have
recently revealedf1,2g some interesting effects that are of
importance not only in the general physics of liquid crystals
but also in their practical applications. As has been known
for some time, the temperature evolution of cholesteric
liquid-crystal structures in samples with finite anchoring en-
ergy may be continuous over some range of temperature with
jumplike changes at definite temperature pointsf3–5g and
strong hysteresis when the temperature is reversedf5,6g.
Some of these problems have been investigated recently both
theoretically and experimentallyf1,2,6,7g. It has also been
shown that in some cases such systems may possess several
metastable statesf8,9g. The dynamics of thin cholesteric lay-
ers may be even more important from the application point
of view because of their potential use in the construction of
multistable displays and switches. From a more general point
of view, such systems belong to a wider class of liquid-
crystal systems in a strongly restricted geometry with prop-
erties being controlled to a large extent by surface anchoring
f4,10,11g. The general dynamics of thin cholesteric, or even
nematic, layers with special surface conditions and possibly
multiple metastable states is a very difficult computational
problem. Thus only a few particular cases have been inves-
tigated so far. This includes, for example, the theoretical de-
scription f12g of the switching between two bistable states
f13,14g which was experimentally observed by Barberi and
Durandf13g. Another example is harmonic oscillation of the
helical structure in a cholesteric layer subject to a pulsed

electric field perpendicular to the helical axisf15g. This type
of experiment may be used to measure the rotational viscos-
ity g1 f16g.

Very recently, theoretical modeling of the jump dynamics
has received new impetus because it has been found that
pitch jumps have revealed themselves in the lasing frequency
jumps that occur in mirrorless temperature-controlled lasing
in chiral liquid crystalsf17,18g. One notes that in real sys-
tems, pitch jumps often do not occur simultaneously in the
whole cell. Instead a domain wallswhich in the case of a
straight wall moves with a certain stationary velocityd is
formed which separates regions that have different values of
the pitch. Such domain wallsswhich have very recently been
observed by Kuczynskif6g and Coles and co-workersf18gd
interfere with lasing, and it is important to find ways to con-
trol them. It is important to note here that the stationary
velocity of the domain wall is determined by that very relax-
ation process of the helical structure in a thin layer which is
investigated in this article. Other systems where dynamics of
jump-wise variations of the pitch may also be important are
cholesteric layers with large flexoelectric coefficients and
weak surface anchoring subject to external electric fields
f19g. In such systems, one finds the so-called longitudinal
flexoelectric domainsf20–22g. Such domains also exist in
nematicsswhere they are also known as “variable grating
mode” ff23g, pp. 105–108g because the period of the do-
mains is inversely proportional to the applied voltaged. In
cholesteric cells, however, the orientation of the domains de-
pends on the number of half-turns of the helix between the
cell boundaries. This number is changed after the pitch jump,
and thus the aforementioned relaxation of the helical struc-
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ture after the jump should control the reorientation of such
domains in an oscillating field.

In this present article, which is a continuation of our pre-
liminary studyf7g, we investigate pitch jump dynamics in a
relatively thin planar cholesteric layer for the simplest case
of an infinitely strong anchoring on one of the surfaces and
weak anchoring on the other. This case corresponds to large
values of the dimensionless parameterSd=K22/Wd, where
K22 is the twist elastic constant,W is the depth of the anchor-
ing potential, andd is the layer thickness.Sd is the nondi-
mensionalized swith respect to dd extrapolation length
K22/W. As discussed in previous articles, in the case of weak
anchoring and relatively thin layers the jump-wise changes
of the pitch may occur without formation of defects because
it is always more energetically favorable to adjust the direc-
tor orientation at the surface than to form a defect core. The
same conclusion is also valid for dynamics of the helix in the
course of a jump. In the caseSd,1, the dynamical torques
are of the same order as the equilibrium ones, and they are
not sufficiently strong to cause any disruption of the director
distribution, including any deviation from thexy plane. It
should be noted that even in this simple case, the relaxation
of the helical structure after the pitch jump is very different
from the dynamics of a helix unwinding in a field. It will be
shown that for finite values of surface-anchoring, the charac-
teristic relaxation times are much larger than the correspond-
ing relaxation times in the unwinding processswhich have
been estimated, for example, inf24gd. This result enables one
to justify the so-called quasistatic approximation, which as-
sumes that the homogeneous helical structure remains undis-
torted and only the pitch is slowly changing with time. In
this case, the relaxation of the helical structure in the cell
occurs without any orientational waves traveling from one
surface to the other. The quasistatic approximation and its
limits of applicability are investigated and derived in detail
in the Appendix.

The study of dynamics in the course of a pitch jump in
this simple case can be considered as the first step in the
modeling of more complex dynamical effects including, in
particular, the movement of domain walls in thin cholesteric
layers and switching between multistable states, which will
be undertaken in the near future. At the same time, even in
this simple case, the study reveals some interesting features
related to the effects of restricted geometry. In particular, the
pitch jump dynamics is essentially dependent on the shape of
the surface-anchoring potential, which may be different from
the Rapini-Papoular formf7g. There is no doubt that the
Rapini-Papoular potential is a reasonable approximation for
any surface potential for small deviation angles. This is be-
cause the Rapini-Papoular potential is not a complete model
but only the first term of the systematic expansion of any
potential around the equilibrium anchoring angle which
should be valid at least for sufficiently small deviations. This
potential is frequently used not only because of its simplicity
but also because usually one studies phenomena related to
surface anchoring which are determined only from the con-
sideration of small deviation angles, where the shape of the
potential is approximately quadratic in the deviation angle.
Conventional experimental techniques are able to test the
form of the potential for relatively small or mediumsif non-

linear effects are taken into considerationd deviation angles.
The problem is that jump dynamics is particularly sensitive
to the shape of the potential at large deviations, i.e., around
its maximum. The corresponding relaxation time is a unique
quantity which can yield some qualitative information about
the form of the potentialmaximumsand not the minimum
where the Rapini-Papoular potential is justifiedd, i.e., about
the form of the potential barrier which the director has to
overcome after the pitch jump.

The natural way to construct a surface potential for large
deviations from the equilibrium could be to add a number of
higher-order terms to the Rapini-Papoular potential as indeed
has been proposed by several authors including Barberiet al.
f25g and Yoneyaet al. f26g. Such expressions, however,
make real sense only if the deviation angles are not too large,
i.e., if the expansion converges rapidly. For very large devia-
tions, when the angle is aboutp /2, it is difficult to decide
how many terms one has to keep in the expansion. In addi-
tion, the coefficients in these terms are generally unknown,
and as a result the model anchoring potential will depend on
a large number of independent parameters, which makes it
difficult to arrive at any general conclusions. In this paper,
we have taken a different approach. Instead of using an ex-
pansion of the general potential, we have selected a family of
simple model potentials which depend on a single model
parameter that characterizes the potential depth. All these
potentials, of course, reduce to the Rapini-Papoular potential
for small deviation angles. At the same time, different poten-
tials considered in this paper differ dramatically in the vicin-
ity of the maximum of the potential. As discussed below in
Sec. III, the family of such potentials mainly includes the
qualitatively different limiting cases when the potential bar-
rier is very sharp or very broad, respectively. This approach
enables one to study the influence of some crude qualitative
features of the anchoring potential on the order of magnitude
of the relaxation time of the helical structure in a thin cell.
Such relaxation times can be measured experimentally and
the results may shed some light on these qualitative shapes
of the surface potential barrier. However, it should be noted
that such an approach may not be justified for a general
study. For a particular physical system with known surface
properties, it may be a better idea to model the potential by a
few terms taken from the general expansion, especially if
different terms may have different physical meaning, i.e.,
they may be determined by different interactions or surface
effects. In this case, one can still use the general formulas
obtained in this paper, which are valid for any form of the
potential.

The plan of this article is as follows. In Sec. II, we discuss
the nature of jump dynamics via the dissipation function and
special forms for the director orientation angle. The usual
Rapini-PapoularsRPd andB potentials are also summarized.
Narrow well potentials RPn andBn, which are modifications
of the RP andB potentials that are indexed byn, are intro-
duced in Sec. III. An identification of the jump angle of the
director as a function of the dimensionless parameterSd is
also made. This leads naturally to a discussion of the jump
dynamics for narrow well potentials in Sec. IV, where the
temporal behavior of the director angle at the layer surface
during a jump is presented in Figs. 7 and 8, with a compari-
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son of the results for RPn and Bn potentials being given in
Fig. 9. In Sec. V, the dependence of the switching times upon
the normalized anchoring strength and sample thickness have
been calculated in Fig. 10; a comparison of the results for the
temporal behavior at different values ofSd appears in Fig. 11.
The article closes in Sec. VI with some conclusions and a
brief discussion.

II. JUMP DYNAMICS

We investigate the dynamics of pitch jumps in a cell of
cholesteric liquid crystal with strong anchoring at one sur-
facesat z=0d and relatively weak anchoring at the other sur-
face sat z=d, whered is the layer thicknessd, as shown in
Fig. 1, where the double-headed arrows indicate the align-
ment direction at the surfaces. Similar to our previous article
f7g, we consider the reorientation of the director in the bulk
and assume hydrodynamic flow is negligible with the direc-
tor being everywhere parallel to the plane of the surfaces,
i.e., parallel to thexy plane.

The director distribution under the above assumptions is
completely specified by the azimuthal anglefsz,td. In the
absence of flow, the director relaxation is described by the
general equationf27–29g

dF

dt
= −E

V

DdV, s2.1d

whereF is the total free energy of the liquid-crystal cell,D is
the Rayleigh dissipation function, andV is the sample vol-
ume. It is further assumed that the director distribution in the
layer is quasistatic, that is, the helical structure within the
layer remains undistorted and corresponds to some value of
the pitch which is changing with time. In this case, the azi-
muthal angle in the bulk and its derivative can be expressed
in terms of the anglewstd at the surfacez=d via the relations

fsz,td =
z

d
wstd and

]f

]t
=

z

d

dw

dt
. s2.2d

According to Eq.s2.2d, the anglefsz,td vanishes at the sur-
facez=0 which is characterized by strong anchoring, and is
equal towstd at the surfacez=d. This quasistatic approxima-
tion and its limits of validity are derived and considered in
detail in the Appendix.

The free energy in Eq.s2.1d is the volume integral of the
well known Frank distortion energy of the cholesteric phase

F = 1
2K11s= ·nd2 + 1

2K22sn · = 3 n + qd2

+ 1
2K33sn 3 = 3 nd2. s2.3d

In a homogeneous planar cholesteric cell without defects,
only the twist deformation is present and the director is ex-
pressed as

nx = cossqzd, ny = sinsqzd, nz = 0, s2.4d

whereq is the wave vector of the helical structure. Substitu-
tion of Eq. s2.2d into Eq. s2.1d yields the following simple
expression for the total free energy of the cholesteric layerF
f1–4g in terms of the single variablew swhich has the mean-
ing of the director orientation angle at the surface with finite
anchoringd:

FsTd = Wsswd +
K22

2d
fw − w0sTdg2, s2.5d

whereWsswd is the surface anchoring potential atz=d and
K22 is the twist elastic constant. The anglew is related to the
actual wave vector in the cellq by the simple relationw
=qd. Here the anglew0sTd is the external parameter deter-
mined by the director rotation angle atz=d in the absence of
anchoring, i.e., the quantity dependent on the equilibrium
wave vectorq0sTd of the helix in an infinite sample of the
cholesteric liquid crystalfw0sTd=q0sTddg. In terms of the
anglew, the dissipation functionD f27–29g can then be ex-
pressed as

D ; g1S ]f

]t
D2

= g1S z

d
D2Sdw

dt
D2

, s2.6d

whereg1 is the rotational viscosity.
The equation determining the equilibrium value ofw as a

function of the temperaturefor w0sTdg is obtained from Eq.
s2.5d and is given by

dWs

dw
+

K22

d
fw − w0sTdg = 0. s2.7d

Here, and below, the anglesw andw0sTd denote the deviation
of the director at the surface with finite anchoring from the
alignment directionsthis involves an inessential change of
the origin when assessing the director orientation angled. An
analysis of Eq.s2.7d f1,2,7g shows that a smooth change in
the director deviation anglew is possible whilew is less than
some critical anglewc. Upon w achieving the critical value
wc, a jumplike change of the pitch occurs. ForSd.1/2p, the
transition to the unique new configuration of the helix occurs
that differs by one in the number of half-turnsN. In this case,
it is possible to restrict the range of values ofw to the inter-
val f−p /2 ,p /2g using the formulaw=Np+w8, where the
integer N=intfw /pg is the number of half-turns within the
layer thickness. All solutions forw8 fit into the domainf
−p /2 ,p /2g. For the remainder of this article, we only use
the variablew8, with the prime dropped for simplicity. The
critical value of the director deviation anglewc corresponds
to the configuration withN director half-turns in the layer
when it is at an instability point. We also record here that for
the typical valueK22=5310−7 dyn and anchoring strength

FIG. 1. The case of nonidentical anchoring at the surfaces of a
cholesteric layer. The double-headed arrows represent the alignment
direction at the surfaces.sFor infinitely strong anchoring at the
lower surface,w2=0, and for finite anchoring at the upper surface,
w=w1.d
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W=10−3 erg cm−2, the criterionSd.1/2p is certainly satis-
fied for cell thicknessesd,30mm.

The pitch in the layer just before the jump,pd, and the
corresponding natural pitch,p, are expressed bywc via the
following formulas:

pdsTcd = 2d/sN + wc/pd,

psTcd = 2d/fN + w0sTcd/pg, s2.8d

where Tc is the jump temperature. The anglew0sTcd sthe
natural one at the jump point temperatured is given by the
formula

w0sTcd = wc +
d

K22
F ]Wsswd

]w
G

w=wc

. s2.9d

The value ofw after the jump, denoted byw j, which is
basically connected to the pitchpdjsTcd in the layer after the
jump, is determined by the solution of the equation

]Wsswd
]w

+
K22

d
fw − w0sTcd + pg = 0, s2.10d

wherew0sTcd is determined by Eq.s2.9d. The critical angle
wc for identical anchoring at both surfaces is determined only
by the shape of the anchoring potentialf1,2g; nevertheless,
for different anchoring at the surfaces it may be dependent
on other parameters of the problem.

Substitution of Eq.s2.6d into Eq. s2.1d yields the follow-
ing equation for the dynamical variablewstd:

dw

dt
= −

3

dg1

dF

dw
. s2.11d

As mentioned in the Introduction, we shall select a family of
simple model potentials which depend on the parameterW
sand, in Sec. III below, onnd, which characterizes the depth
of the surface potential wells. In such instances,Wsswd
=Wfswd, where fswd is some dimensionless function ofw.
For example, for the Rapini-Papoular potentialf3,19g, fswd
=−s1/2dcos2swd. In this case, Eq.s2.11d can be rewritten in
the simple dimensionless form

dw

dt̂
= − 3

Sd

dg1

dF̂

dw
, s2.12d

where the dimensionless free energyF̂ is

F̂ = fswd +
Sd

2
fw − w0sTdg2, s2.13d

and the dimensionless timet̂ and the dimensionless param-
eterSd are defined by, respectively,

t̂ = t
p2K22

g1d
2 , Sd =

K22

Wd
. s2.14d

Equations2.12d allows us to determine the solutionw im-
plicitly, by integration overw from t=0 when the director
anglew at the surface is equal to the critical valuewc, up to
wst̂d corresponding to the timet̂. As discussed in detail in our

previous articlef7g, the critical anglewc corresponds to the
instability point where the solution forw, which minimizes
the free energys2.5d for Eq. s2.13dg, loses its stability.

In a similar way, one can also define the duration of the
jump t f7g that is given by the same integration of Eq.s2.11d
with the upper limit being replaced byw j, which is the angle
reached at the final equilibrium state after the jump. This
results in the durationt of the jump being given by

t = −
dg1

3
E

wc

w j FdF

dw
G−1

dw. s2.15d

One notesssee Sec. IIId that the values ofwc and w j de-
pend strongly upon the shape of the anchoring potential, that
is, upon the form of the functionfswd given in the present
model. Inf7g, we considered two types of anchoring poten-
tial. The first one was the well-known Rapini-PapoularsRPd
potentialf3,4,19,27g given by fsee Fig. 2sadg

Wsswd = −
W

2
cos2swd, s2.16d

which, for smallw, is simply the first term in the systematic
Fourier expansion of any surface potential which depends
only on the anglew. The RP potential clearly has periodp.
The other potential considered was the so-calledB potential
f7g, which can be expressed asfsee Fig. 2sadg

Wsswd = − WFcos2Sw

2
D −

1

2
G, −

p

2
, w ,

p

2
.

s2.17d

The B potential also has periodp when it is continued peri-
odically for uwu.p /2 according to the relationWsswd
=Wssw−pd.

The RP andB potentials are very similar in the vicinity of
the minimum pointw=0, but in the region around the edge

FIG. 2. Qualitative plots ofsad the Rapini-PapoularsRPd and the
B potentials, andsbd the Rapini-Papoular-likesRPnd and theB-like
sBnd potentials. These examples are forn=2.
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of the potential well, i.e., near themaximumpoint sat w
=p /2d, the behavior of theB potential is very much different
from that of the RP potential. The RP potential is very
smooth everywhere, and is characterized by the same curva-
ture at the minimum and maximum points. In contrast, theB
potential has a discontinuous first derivative at the edge of
the potential well, that is, at the maximum point of the po-
tential. Physically, this means that the edge of such a poten-
tial is very “sharp”si.e., the curvature is very larged, and the
torque acting on the director rapidly changes sign. In this
article, we consider a complementary class of “narrow” po-
tentials which are characterized by having a potential well
width less thanp and a very broad maximum aroundw
=p /2 svery low curvatured where there is no restoring
torque, i.e., where every value of the anglew in the “broad
maximum” region is marginally stable.

III. NARROW WELL MODEL ANCHORING POTENTIALS

The model anchoring potentials to be introduced in this
section are natural generalizations of the RP andB potentials
studied inf7g. These new generalized model anchoring po-
tentials will be employed to examine the temperature behav-
ior of the cholesteric helix in a planar cholesteric layer of
finite thickness having finite strength of anchoring at one of
its boundary surfaces and infinite strength at the otherssee
Fig. 1d.

As in f7g, we restrict the analysis of the temperature varia-
tions of the director configuration in the layer by assuming
that the pitch jump mechanism is connected with the director
overcoming the anchoring barrier at the surface and, more-
over, that liquid-crystal thermal fluctuations may be ne-
glected. Our main attention follows the approach contained
in f1,2,7g and will be concentrated on the transitions between
N andN+1 half-turns of the director in the layer which pro-
ceed without strong local disturbances of the director con-
figuration.

As was shown inf1,2g, the variations of the pitch in the
layer and, in particular, hysteresis, are determined by the
dimensionless parameterSd=K22/Wd, whereW is the depth
of the anchoring potential. These variations are rather univer-
sal because they are not directly dependent upon the sample
thickness. This means that for any specific form of the an-
choring potential in expressions2.5d, Eq. s2.7d may be trans-
formed to a form in which the parametersd, K22, andW of
the problem occur only in combinations which reduce to the
dimensionless parameterSd.

Note that, in principle, the anchoring potential may be
reconstructed from experimental measurements of the tem-
perature dependence of the anglew by fitting the measured
values to the solution of Eq.s2.7d, whereWsswd should be
assumed as an unknown function subjected to determination.
However, as a first step it is more practical to compare the
measured values ofw with the solutions of Eq.s2.7d by
means of some trial functions forWsswd. In other words, we
have to adopt some model potentials for the surface anchor-
ing which have shapes that are reasonably acceptable from
the physical point of view.

We now apply the general relations from the previous
section to specific shapes of the surface anchoring potential

introduced in the following two subsections. These are natu-
ral generalizations of theB potentialsintroduced inf7gd and
the RP potential.

A. Bn potential

The Bn potential is defined by

Wsswd = − WFcos2Snw

2
D −

1

2
G if −

p

2n
, w ,

p

2n
,

s3.1d

Wsswd = 0 if
p

2n
, uwu ,

p

2
, s3.2d

and is continued periodically foruwu.p /2, according to the
relationsWsswd=Wssw−pd, where n.1, as shown in Fig.
2sbd. The case forn=1 corresponds to theB potential shown
in Fig. 2sad. The critical angle for theBn potential is given by
wc=p /2n. Depending on the value of the parameterSd, there
are two possible cases for the value of the post-jump angle
w j. If Sd,n2/ f2psn−1dg, then the deviation angle of the
director remains inside the anchoring potential well after the
jump andw j is determined from Eq.s2.7d with w0sTd re-
placed byw0sTcd−p. If Sd.n2/ f2psn−1dg, then the devia-
tion angle of the director occurs outside of the anchoring
potential well after the jump andw j is determined by the free
rotation anglew0sTcd at the pointstemperatured of the jump,
i.e., by the angle of the director orientation at the surface in
the absence of anchoring, which is given by expression

w0sTcd =
p

2n
+

n

2Sd
. s3.3d

This means that ifSd.n2/ f2psn−1dg, then the jump ends at
w j =w0sTcd=p /2n+n/2Sd.

The free energys2.5d for theBn potential accepts the form

FsTd
W

= − Fcos2Snw

2
D −

1

2
G +

Sd

2
fw − w0sTdg2

if −
p

2n
, w ,

p

2n
, s3.4d

FsTd
W

=
Sd

2
fw − w0sTdg2 if

p

2n
, uwu , p −

p

2n
. s3.5d

Naturally, the surface term in the free energys3.4d fi.e., the
first term on the right-hand side of Eq.s3.4dg continued as a
function of w outside its given limitations has to satisfy the
periodic conditions formulated above on the anchoring po-
tential. Equations2.7d determines the equilibrium value ofw
in the layer as a function of the temperaturefor w0sTdg and is
of the form

sinsnwd +
2Sd

n
fw − w0sTdg = 0 if −

p

2n
, w ,

p

2n
,

s3.6d
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w = w0sTd if
p

2n
, uwu , p −

p

2n
. s3.7d

If Sd,n2/ f2psn−1dg, then the deviation angle of the di-
rector remains inside the anchoring potential well after the
jump, and sow is restricted by the condition −p /2n,w
,p /2n. For this case, the deviation anglew j after the jump
is determined from the expression

sinsnw jd +
2Sd

n
fw j − w0sTcd + pg = 0, s3.8d

where w j is inside the potential well, i.e., −p /2n,w j
,p /2n. It should be remembered here again that the angles
w, w j, andw0sTd are measured relative to the alignment di-
rectionscf. Fig. 1d, so that after the jump they are reduced by
p. For the caseSd.n2/ f2psn−1dg, as has been mentioned
previously,w j =w0sTcd=p /2n+n/2Sd.

B. RPn potential

In a similar fashion, we may define the RPn potential by

Wsswd = −
W

2
cos2snwd if −

p

2n
, w ,

p

2n
, s3.9d

Wsswd = 0 if
p

2n
, uwu , p −

p

2n
, s3.10d

which is continued periodically foruwu.p /2 according to
the relationWsswd=Wssw−pd, wheren.1, as shown in Fig.
2sbd. The case forn=1 corresponds to the RP potential
shown in Fig. 2sad.

For RPn potentials, a jump-wise transition occurs ifSd
,n2. In such cases, the critical angle is dependent onSd and
is determined from the expression

wc =
1

2n
FarccosS−

Sd

n2DG . s3.11d

There are two possible cases depending on the value of the
parameterSd. If Sd, s1/2dfn sins2nwcdg / hpf1−1/s2ndg−wcj,
then the deviation angle of the director remains inside the
anchoring potential well after the jump andw j is determined
from equations analogous to Eqs.s2.7d and s3.8d. If n2.Sd
. s1/2dfn sins2nwcdg / hpf1−1/s2ndg−wcj, then the deviation
angle of the director occurs outside the anchoring potential
well after the jump andw j is determined byw0sTcd, i.e., by
the angle of the director orientation at the surface in the
absence of anchoring, which is given by the expression

w0sTcd = wc +
n

2Sd
sins2nwcd. s3.12d

In the case whenSd.n2, there are no jumps for the RPn
potentials and the variations ofw with temperature are
smooth. This is an observable consequence of the difference
between the RPn and Bn potentials because jumps exist for
Bn potentials at any value of the parameterSd. The free en-
ergy s2.5d for the RPn potential accepts the form

FsTd
W

= −
1

2
cos2snwd +

Sd

2
fw − w0sTdg2 if −

p

2n
, w ,

p

2n
,

s3.13d

FsTd
W

=
Sd

2
fw − w0sTdg2 if

p

2n
, uwu , p −

p

2n
.

s3.14d

The surface term in the free energy described by Eqs.s3.13d
and s3.14d fi.e., the first term on the right-hand side offEq.
s3.13dg continued as a function ofw outside its limitations
has to satisfy the periodic conditions formulated above for
the anchoring potential. As before, Eq.s2.7d determines the
equilibrium value ofw in the layer as a function of the tem-
peraturefor w0sTdg and has, in this situation, the form

sins2nwd +
2Sd

n
fw − w0sTdg = 0 if −

p

2n
, w ,

p

2n
,

s3.15d

w = w0sTd if
p

2n
, uwu , p −

p

2n
. s3.16d

If Sd, s1/2dfn sins2nwcdg / hpf1−1/s2ndg−wcj, then w re-
mains inside the anchoring potential well after the jump, and

FIG. 3. Post-jump anglew j sthin linesd and the angular width of
the jumpw j −wc sbold linesd as functions ofSd, calculated for the
RPn sdashed linesd andBn potentialsssolid linesd whenn=2.

FIG. 4. Post-jump anglew j sthin linesd and the angular width of
the jump w j −wc sbold linesd as functions of the layer thickness
snormalized by the penetration lengthK22/Wd calculated for the
RPn sdashed linesd andBn potentialsssolid linesd whenn=2.
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is therefore restricted by the condition −p /2n,w,p /2n.
For this case, the deviation anglew j after the jump is deter-
mined from the expression

sins2nw jd +
2Sd

n
fw j − w0sTcd + pg = 0, s3.17d

where w j is inside the potential well, i.e., −p /2n,w j
,p /2n, and, more precisely, −wc,w j ,wc.

The essential difference between theBn potentialss3.1d
and s3.2d and the RPn potentialss3.9d and s3.10d is in the
shape of the wells close to the well edges, just as in theB and
RP potentials, particularly in the values of the anchoring
force at the pointsuwu=p /2n beyond which the anchoring is
absent over some angular interval. For theBn potentials, this
force reaches a maximum value and is discontinuous there,
while for the RPn potentials the force at such values is zero
and continuous.

The expressions in this section may be used for obtaining
the dynamical characteristics of the pitch jumps forBn and
RPn potentials which, in particular, are determined by the
initial equilibrium wc and finalw j values of the anglew in the
course of a jump. As examples,w j and the angular width of
the jumpsi.e., w j −wcd have been calculated as functions of
Sd in Fig. 3 and as functions of the layer thicknessd in Fig.
4 for theBn and RPn potentials whenn=2. Figure 5 demon-
strates the dependence of the critical anglewc uponSd for the

RPn potential whenn=2; the dependence ofwc upon the
layer thickness is presented in Fig. 6 for this same potential.

IV. JUMP DYNAMICS FOR NARROW POTENTIALS

We shall describe the jump dynamics of the layer in the
course of the transition from theN configuration to theN
+1 configuration for the narrowBn potentialss3.1d ands3.2d
and the RPn potentialss3.9d and s3.10d, using the same ap-
proximation as inf7g, that is, we assume that the angular
distribution of the director inside the layer is quasistatic and
that any hydrodynamic flow is negligible. In our problem the
anchoring forces, being localized at the layer surfaces, are
nevertheless extremely important because they influence the
director distribution in the bulk of the layer. However, as
mentioned above, due to the imposed quasistatic approxima-
tion of the director inside the layer, the problem may be
reduced to that of temporal motion of the director at the layer
surface.

We now employ the above general dynamical formulas in
the calculation of the temporal characteristics of the jump for
the modelBn and RPn surface anchoring potentials.

A. Bn potential

For theBn potentials, a jump-wise transition occurs at any
value of Sd and the critical angle is given bywc=p /2n. If
Sd.n2/ f2psn−1dg, then at the beginning of the jumpw
=p /2n and the director escapes off the well and the jump
ends atw j =w0sTcd=p /2n+n/2Sd. In this case,p /2n,w
,p−p /2n and the temporal dependence ofw is represented
by

w = fw0sTcd − wcgF wc

w0sTcd − wc
+ 1 − expS−

t

td
DG ,

where

td =
d2g1

3K22
. s4.1d

If Sd,n2/ f2psn−1dg, then the deviation angle of the di-
rector occurs in the next potential wellfsee Fig. 2sbdg at the
end of the jump. When the director is off the wellsp /2n
,w,p−p /2nd, the temporal dependence ofw is again rep-
resented by the expressions4.1d However, for the director
motion inside the next wellsp−p /2n,w,p+p /2n, or
what corresponds to −p /2n,w,p /2n in theN+1 configu-
ration of the directord, the form of the temporal dependence
changes and is given by

t = tf − 2tdSdE fn sinsnwd − n + 2Sdsw + p − p/2ndg−1dw,

s4.2d

where tf corresponds to the moment whenw reaches the
value p−p /2n fi.e., tf is determined by Eq.s4.1d when w
=p−p /2ng and the integration in Eq.s4.2d runs sin the di-
rector configuration withN+1 half-turnsd from −p /2n to w
under the restriction −p /2n,w,w j ,p /2n, wherew j is de-
termined by the solution of the equation

FIG. 5. The dependence of the critical anglewc uponSd for the
RPn potential whenn=2.

FIG. 6. The dependence of the critical anglewc upon the layer
thicknesssnormalized by the penetration lengthK22/Wd for the RPn

potential whenn=2.
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n sinsnw jd + 2Sdfw j + p − n/s2Sdd − p/2ng = 0. s4.3d

It follows from Eq. s4.1d–s4.3d that the dynamics of pitch
jumps in anchoring potentials possessing a narrow angular
width of the well differs essentially from the corresponding
dynamics for both the RP andB potentialsf7g.

B. RPn potentials

For the RPn potentials, a jump-wise transition occurs if
Sd,n2 and the critical angle, which is dependent onSd, is
determined by the expressions3.11d. There are two possible
cases depending on the value of the parameterSd. If Sd
, s1/2dfn sins2nwcdg / hpf1−1/s2ndg−wcj, then the deviation
angle of the director remains inside the anchoring potential
well at the end of the jump andw j is determined from Eq.
s2.7d with w0sTd replaced byw0sTcd−p. If n2.Sd. s1/2d
3fn sins2nwcdg / hpf1−1/s2ndg−wcj, then the deviation angle
of the director occurs outside the anchoring potential well
after the jump andw j is determined byw0sTcd, i.e., by the
angle of director orientation at the surface in the absence of
anchoring, which is given by the expressions3.12d. In the
case n2.Sd. s1/2dfn sins2nwcdg / hpf1−1/s2ndg−wcj, with
wc,w,w0sTcd,p−p /2n, the time and director deviation
angle are interconnected by the expressions

t = − 2tdSdE fn sins2nwd − n sins2nwcd

+ 2Sdsw − wcdg−1dw if wc , w ,
p

2n
, s4.4d

w = w0sTcdF1 − expS−
st − ted

td
DG +

p

2n
expS−

st − ted
td

D
if

p

2n
, w , w0sTcd , p −

p

2n
, s4.5d

where, in Eq.s4.4d, the lower integration limit iswc, andte in
Eq. s4.5d is determined by Eq.s4.4d when the upper integra-
tion limit is set equal top /2n.

In the caseSd, s1/2dfn sins2nwcdg / hpf1−1/s2ndg−wcj,
with w0sTcd.p−p /2n, the time and director deviation angle
are again interconnected by the same expressions in Eq.s4.4d
ands4.5d while w,p−p /2n. However, whenw.p−p /2n,
the time and director deviation angle are provided by the
expression

t = ti − 2tdSdE fn sins2nwd − n sins2nwcd

+ 2Sdsw + p − wcdg−1dw if − wc , w , w j , s4.6d

whereti is determined from Eq.s4.5d whenw=p−p /2n and
the integration in Eq.s4.6d runssin the director configuration
with N+1 half-turnsd from −p /2n to w, which is restricted
by the condition −p /2n,w,w j, wherew j is determined by
the solution of the equation

n sins2nwd − n sins2nwcd + 2Sdsw j + p − wcd = 0, s4.7d

with wc being determined from Eq.s3.11d.

The temporal behavior of the director orientation anglew
at the surface during a jump at various values ofSd is pre-
sented in Fig. 7 for theBn potential and in Fig. 8 for the RPn
potential. The calculations were performed according the for-
mulass4.1d–s4.7d with t̄= t /td, wheretd is the characteristic
time defined in Eq.s4.1d

V. CALCULATIONS AND COMMENTS

The calculations we have performed reveal the observable
differences between the RPn andBn potentials and also allow
a comparison with the results for the RP andB potentials.
Before discussing the matter of our main interest, namely,
the dynamical properties of the jump, we look at the equilib-
rium characteristics of the layer for the RPn and Bn poten-
tials. Figure 3 shows that jump-wise changes of the pitch
only exist for the RPn potential over a limited range of the
Sd, unlike that for theBn potential, for which there is a jump
at any value ofSd. For both types of potentials there are
jump-wise changes of the post jump anglew j which corre-
spond to the minimum value ofSd at which the deviation
angle of the director escapes from the potential well after the
jump. However, this value of the parameterSd=Sdj at the
jump point ofw j ssee Fig. 3d differs: Sdj equals 0.637 for the
Bn potential and 0.513 for the RPn potential whenn=2. This
difference is demonstrated in Fig. 3 and also by Fig. 4, where
the dependence of the jump angle upon the layer thickness is
presented and the difference in the location of the jump point
is shown more clearly. This difference reveals itself, some-
times in quite a pronounced way, in the jump dynamics. In
general, with growth ofn the difference between theBn and
RPn potentials becomes less pronounced. In particular, the
difference in the values of the parameterSdj at the jump point
of w j decreases. For example, the values ofSdj at the jump
point of w j are 0.712 for theBn potential and 0.638 for the
RPn potential whenn=3, and 0.752 and 0.784, respectively,
for n=4.

FIG. 7. Temporal behaviorsin units of the characteristic time
td=d2g1/3K22d of the director orientation anglew at the surface
during a jump for theBn potential forn=2 at various values ofSd.
There is a critical valueSdj=n2/ f2psn−1dg where the nature of the
solution changes, as discussed in the text.

BELYAKOV, STEWART, AND OSIPOV PHYSICAL REVIEW E71, 051708s2005d

051708-8



Comparison of Fig. 7 and Fig. 8 shows that the jump
dynamics is generally slower for the RPn potential than for
the Bn potential. It is especially pronounced for largeSd
sweak anchoringd. For strong anchoringscorresponding to
small values ofSdd, the differences becomes less but never-
theless retain features that are quite observable.

Figure 9 presents a comparison of the jump dynamics for
the Bn and RPn potentials on a real time scale for typical
values of the experimental parameters involved in possible
measurements. Here, the differences in the dynamics for
weak anchoring are especially clear. In particular, Fig. 9 in-
dicates that for an experimental distinction to be made be-

tween theBn and RPn potentials, one should perform an ex-
periment for a weak anchoring, or for a thin sample.sOf
course, it is better if both these conditions are fulfilled simul-

taneously.d The normalized energyW̄=W/W0 has been intro-
duced in Fig. 9, where we have chosen to setW0
=10−5 J m−2, motivated by typical values for the weak an-
choring strength derived from experimental resultsf10g.

Figures 7–9 show that forSd,Sdj, the switching timets in
the jump may be introduced in a natural way as the corre-
sponding time it takes for the deviation angle of the director,
after the jump, to reach the orientation that coincides with
the edge of the surface anchoring potential well.

For theBn potential, the corresponding switching timets
is determined from the expression

ts = − td lnf1 + 2pSds1 − nd/n2g. s5.1d

For the RPn potential, the switching timets is determined
from the expressionss4.4d and s4.5d if one puts w=pf1
−1/s2ndg into Eq. s4.5d. The dependence of the switching

time ts upon the normalized energyW̄=W/W0, with W0
=10−5 J m−2, for theBn and RPn potentialssfor n=2, 3, and
4d, is presented in Fig. 10sad for typical values of the material
parameters, as indicated in the caption. Figure 10sbd shows
the dependence ofts upon the sample thicknessd when the
anchoring strength has been supposed fixed atW=5
310−6 J m−2, with the other parameters as indicated; for

FIG. 8. Temporal behaviorsin units of the characteristic time
td=d2g1/3K22d of the director orientation anglew at the surface
during a jump for the RPn potential forn=2 at various values ofSd.
There is a critical valueSdj for the jump pointw j where the nature
of the solution changes, as discussed in the text.

FIG. 9. Comparison of the temporal behavior of the director
orientation anglew at the surface during a jump for theBn potential
and RPn potential for various values of the normalized anchoring

strengthW̄ and for typical values of the other parameters being set
at d=10 mm, g1=0.05 Pa s, andK22=10−11 N. The normalized an-

choring strength is defined byW̄=W/W0, where we have chosen
W0=10−5 J m−2.

FIG. 10. sad The dependence of the switching timets upon the

normalized anchoring strengthW̄ calculated for theBn and RPn
potentials when typical values of the other relevant parameters are
set tod=10 mm, g1=0.05 Pa s, andK22=10−11 N. The normalized

anchoring strength has been defined byW̄=W/W0, where W0

=10−5 J m−2. sbd The dependence ofts upon the sample thicknessd
whenW=5310−6 J m−2, with g1 andK22 as in sad.
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each value ofn there will be a critical thickness of the layer
below which the switching timets, introduced via Eq.s4.4d,
s4.5d, ands5.1d, loses its sense and the temporal characteris-
tic of the jump is then the relaxation time of the process
given bytd in Eq. s4.1d. The critical depthdj is derived from
the critical parameterSdj through the relationdj =K22/WSdj.
Note that the switching times atd=10 mm displayed in Fig.

10sbd coincide with those displayed in Fig. 10sad at W̄=0.5.
As one expects, the switching times are shorter for theBn
potential than for the RPn potential at the same normalized

anchoring strengthW̄; however, this difference diminishes as
Sd decreases, i.e., as the anchoring strength increases. This is
evident from the qualitative results presented in Fig. 11,
which show the dependence of the deviation anglew upon
the normalized timet̄= t /td, as introduced above. Calcula-
tions for Fig. 11 were carried out for theB, RP,Bn, and RPn
potentialssfor n=2d for the indicated values ofSd.

It should be mentioned here that for the RPn potential, the
integral in Eq.s4.4d diverges at the lower limitwc. In fact,
with the aid of an elementary expansion and the identity
s3.11d, it can be shown that the integrand in Eq.s4.4d has a
singularity of second order aroundw=wc. This forces a cut-
off at some value ofw which is determined from physical
reasons, otherwise the initial motion of the director in the
course of a jump occurs infinitely slowly. The evident expla-
nation for this required shift of the lower integration limit to
a value slightly abovewc is the presence of thermal fluctua-
tions in the anglew, which have so far been neglected in this
article. If one estimates these fluctuations inw according to
the phenomenological approach proposed inf2g, then one
finds that the angular fluctuations inw due to thermal fluc-
tuations for typical values of the liquid-crystal parameters
and for a layer thickness of the order 10mm exceed 0.01.
Therefore, in the calculations of the integrals4.4d it was con-
sidered acceptable to introduce a cutoff equal to 0.01, i.e., it
was assumed thatw−wc.0.01. A more consistent and rigor-

ous account of thermal fluctuations in the director orientation
at the layer surface may be performed in the framework of
the approach used inf9g.

It is worth noticing that the motion of the director at the
beginning of the pitch jump for the RP-like potentials is
essentially slower than that for theB-like potentials. This
feature may be regarded as a convenient means by which one
can experimentally distinguish between these two types of
potential.

VI. CONCLUSIONS

The results of this article enable one to shed some light on
the form of the anchoring potential for large deviations of the
director away from the easy axissi.e., for that part of the
potential which can hardly be tested using conventional equi-
librium techniquesd. For small deviations from the easy axis,
all potentials are quadratic in the first approximation. In con-
trast, the actual form of the potential for large deviations is
generally unknown and may differ significantly from the
simple RP form. One notes that for certain values of the
parameters, the pitch jumps may not occur at all in models
that are based on the Rapini-Papoular form of the anchoring
potential f1g. It was shown in this paper that these same
models are characterized by very largesformally divergingd
relaxation times. Both results are in contradiction with exist-
ing experimental data, including typical velocities of domain
walls. These peculiar features of the model are related to the
specific form of the Rapini-Papoular potential at large devia-
tion angles from the equilibrium and deserve a more detailed
discussion. In this article, we have undertaken a comparative
study of the pitch jumps for four different types of potential:
the standard RP potential and theB potentialfsee Fig. 2sadg,
which has a discontinuity of the derivative at the point of a
maximumsi.e., where there is very large curvatured, and the
narrow well RP andB potentials, which have very low cur-
vature around the midpoint between two successive wells
fsee Fig. 2sbdg. The main qualitative results are summarized
in Fig. 11. First, one notes that the dynamics of the director is
qualitatively different in the cases of strong and weak an-
choring. For strong anchoringsi.e., low values of the param-
eterSdd, the director dynamics and the corresponding relax-
ation times are qualitatively the same for all types of
potentials, and although there are quantitative differences,
one can hardly extract any qualitative information about the
actual form of the anchoring potential from the experimental
data. In contrast, for weak anchoring the dynamics of the
director strongly depends on the type of the potential. For the
RP potential, the relaxation time is very long and should vary
significantly from one measurement to another because, as
discussed in Sec. V, the director relaxation in this case is
triggered by a fluctuation of the azimuthal anglef. For nar-
row RP potentials, the general behavior is similar but the
response times are slightly longer than those for the RP po-
tential. These qualitative features can be observed experi-
mentally if RP-type potentials represent good models for ac-
tual potentials. In contrast, the response times are
significantly shorter forB-type potentials compared to the
RP-type potentials and the dynamics is much more regular.

FIG. 11. Comparison of the temporal behaviorsin units of the
characteristic timetd=d2g1/3K22d of the director orientation angle
w at the surface during a jump for theB, RP,Bn, and RPn potentials
sfor n=2d for various values of the parameterSd. Recall that the
anchoring strength increases asSd decreases.
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For narrowBn potentials, the response time is longer com-
pared to theB potential and this again may be a qualitative
signature of the corresponding form of the potential.

Despite the fact that the specific calculations of the jump
dynamics were performed under simplifying assumptions,
there is no doubt that the qualitative features of the jump
dynamics discussed above will remain valid for jump-wise
phenomena in general. One simplification used was to ignore
any possible effects due to backflow. As mentioned at the
beginning of Sec. II, backflow in the classical twist geometry
for nematics can be safely neglected: the qualitative results
are unaffected. Although backflow cannot be ruled out for
the problem discussed here, we anticipate that the situation
will be similar to that for nematics in a classical twist geom-
etry because the key elastic mechanism in the jump dynam-
ics is related to twist.

The comparison of Figs. 7–11ssee also Figs. 3 and 4d
shows that experimental measurements would allow one to
obtain a qualitative conclusion about the applicability of the
RP potential in the description of jumpssfor Sd.1, the
jumps are absent for the RP potentiald and, moreover, would
determine what kind of narrow well RP-like andB-like po-
tentials, as introduced above, may be applicable in the de-
scription of jumps. The results presented here show that ex-
perimental investigations of the pitch jump dynamics will
provide a unique opportunity to study the actual shape of the
anchoring potential for large angular deviations of the direc-
tor away from the alignment direction.

We conclude this section with one final remark. Notice
that the calculations were mainly performed over a range of
values for the parameterSd for which the pitch jump with
DN=1 proceeds to the equilibrium state of the layer, i.e., for
the situation where the free energy corresponding to the final
director configuration is less than the free energy of any
other possible configuration. The corresponding limitation
demands that the parameterSd exceeds some critical value
Sdc. For the B-like potentials,Sdc=n/3p. For the RP-like
potentials,Sdc is slightly less than this because it is deter-
mined by the relationSdc=n sinfarccoss−Sdc/n

2dg /3p, where
the case forn=1 corresponds to that arising from the RP and
B potentials.
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APPENDIX

In this article, we have assumed that the director configu-
ration inside the cell remains quasistatic during the jump,
and therefore the azimuthal anglefsz,td=sz/ddwstd. In this
simple case, the whole director configuration is described by
the single variablewstd. This approximation can be justified
by considering a more general case when the director con-
figuration is not quasistatic and is specified by the function

fsz,td, which satisfies the Lagrange equationssee, for ex-
ample, Vertogen and de Jeuf28gd

1

2

]D

]ḟ
= − Fel,f, sA1d

where we have neglected, as usual, the inertial terms. Here
Fel,f is the generalized elastic force density

Fel,f =
] fd

]f
− ]a

] fd

]s]afd
, sA2d

where fd is the distortion free energy. Equations2.2d can be
rewritten in a simple explicit form if one assumes that the
director always remains in thexy plane, i.e.,n= x̂ cosf
+ ŷ sinf. In the absence of any flow, the dissipation function
D is again given by Eq.s2.6d, and the distortion free energy
fd is given by

fd =
1

2
K22S ]f

]z
D2

+ q0K22
]f

]z
. sA3d

Substituting Eqs.s2.6d andsA3d into Eqs.sA1d andsA2d, one
obtains the following equation forfsz,td in the bulk:

g1
]f

]t
= K22

]2f

]z2 . sA4d

The diffusion equationsA4d describes the relaxation and
propagation of the azimuthal angle profile inside the liquid-
crystal cell. This equation has the same form as the one used
in the theory of the Freedericksz transitionf3,27g. One notes
that the dynamics of the anglefsz,td is strongly influenced
by the boundary conditions. We assume that the anchoring is
strong at the surfacez=0. Thenfs0,td=0 for all t. The sur-
face z=d is characterized by the anchoring energyUssfd.
The anglef=fsd,td at this surface satisfies the well known
boundary condition

dUs

df
= K22S ]f

]z
− q0D sA5d

at z=d. One notes that Eq.sA4d has the stationary solution

feqszd = zf0/d, sA6d

which satisfies the boundary conditionfs0,td=0 and corre-
sponds to the quasiequilibrium structure. The time-dependent
solution of Eq.sA4d, which satisfies the boundary condition
fs0,td=0, can be written as a sum of the stationary solution
sA6d and a sum of eigenmodes with decreasing relaxation
times to reveal that

fsz,td = zf0/d + o
n

An expS−
n2K22t

g1
Dsinsnzd. sA7d

Here the constantsf0 andn should be determined using the
second boundary condition derived from Eq.sA5d, namely,
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dUs

df
= K22sf0/d − q0d + K22o

n

nAn expS−
n2K22t

g1
Dcossndd,

sA8d

which should be valid for allt.
It should be noted that for sufficiently large values off,

the anchoring potential is always a nonlinear function off
and thusf0 and n can only be determined numerically. On
the other hand, these constants can be estimated for some
limiting cases. For example, in the case of strong anchoring
at the surfacez=d the anglef+fsd,td also vanishes and the
constantsn are expressed asn=pk/d, wherek=1,2,3,…. In
this case, the largest relaxation time ist0=g1d

2/K22p
2,

which is the unit of time used inf3g and is 3/p2 times the
unit of time td used in this article. One can readily see from
Fig. 11 that in the case of weak anchoring, the relaxation
time obtained in the quasistatic approximation is of the order
of 10t0. This means that for weak anchoring, the relaxation
times of some eigenmodes in Eq.sA7d may be much larger
thant0 and therefore some constantsn may be much smaller
than p /d. This result enables one to derive the quasistatic
approximation from the general equationsA7d and to inves-
tigate its region of validity.

Thus let us assume that some relaxation times in Eq.sA7d
are much larger thant0. This means that somen!p /d. In
this case, the general solution can be expressed as a sum of
two terms fsz,td=f1sz,td+f2sz,td, where the function
f2sz,td is a sum of all eigenmodesffrom the general equa-
tion sA7dg with short relaxation timest,t0 or t,t0. By

contrast, the functionf1sz,td contains only modes with large
relaxation timest@t0. At the time scalet@t0, the function
f2 vanishes and the azimuthal angle profile is approximately
given byfsz,td<f1sz,td, wheref1sz,td is expressed in the
form of Eq.sA7d with all n!p /d. Then the argument of the
sine function in Eq.sA7d satisfiesnz!p for all 0,z,d and
therefore sinsnzd can be approximated as sinsnzd<nz. Con-
sequently, the azimuthal angle profile fort@t0 can be ex-
pressed as

fsz,td < zf0/d + o
n

An expS−
n2K22t

g1
Dnz= wstdz/d,

sA9d

wherewstd is the azimuthal angle at the surfacez=d, given
by

wstd = f0 + o
n

An expS−
n2K22t

g1
Dnd. sA10d

One notes that Eq.sA9d has exactly the same form as Eq.
s2.2d, which describes the azimuthal angle profile in the qua-
sistatic approximation. Thus the quasistatic approximation
has been derived directly from the general equationsA7d
assuming that there exist relaxation times larger thant0. As
discussed above, in this approximation the dynamics of the
pitch jump is described by Eq.s2.11d, which indeed yields
sufficiently larger relaxation times in the case of weak an-
choring. This conclusion confirms the assumption made in
this article upon the anglefsz,td.
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